Contents

1. Copyright Notice .. 3
2. What is Remote Proofing? .. 5
3. System Requirements .. 6
4. Setup .. 8
 4.1 At the Central Site .. 8
 4.2 At the Remote Site ... 9
5. The Remote Proof Workflow .. 10
 5.1 Preparing a Job at the Central Site .. 10
 5.1.1 Strips ... 14
 5.1.2 Strip Presets ... 15
 5.2 Transferring the Job to the Remote Site .. 16
 5.3 Proofing the Job at the Remote Site .. 16
 5.4 Recalibrating the Proofer at the Remote Site .. 17
1. Copyright Notice

© Copyright 2012 Esko Software BVBA, Gent, Belgium

All rights reserved. This material, information and instructions for use contained herein are the property of Esko Software BVBA. The material, information and instructions are provided on an AS IS basis without warranty of any kind. There are no warranties granted or extended by this document. Furthermore Esko Software BVBA does not warrant, guarantee or make any representations regarding the use, or the results of the use of the software or the information contained herein. Esko Software BVBA shall not be liable for any direct, indirect, consequential or incidental damages arising out of the use or inability to use the software or the information contained herein.

The information contained herein is subject to change without notice. Revisions may be issued from time to time to advise of such changes and/or additions.

No part of this document may be reproduced, stored in a data base or retrieval system, or published, in any form or in any way, electronically, mechanically, by print, photoprint, microfilm or any other means without prior written permission from Esko Software BVBA.

This document supersedes all previous dated versions.

PANTONE®, PantoneLIVE and other Pantone trademarks are the property of Pantone LLC. All other trademarks or registered trademarks are the property of their respective owners. Pantone is a wholly owned subsidiary of X-Rite, Incorporated. © Pantone LLC, 2012. All rights reserved.

This software is based in part on the work of the Independent JPEG Group.

Portions of this software are copyright © 1996-2002 The FreeType Project (www.freetype.org). All rights reserved.

Portions of this software are copyright 2006 Feeling Software, copyright 2005-2006 Autodesk Media Entertainment.

Portions of this software are copyright ©1998-2003 Daniel Veillard. All rights reserved.

Portions of this software are copyright ©1999-2006 The Botan Project. All rights reserved.

Part of the software embedded in this product is gSOAP software. Portions created by gSOAP are Copyright ©2001-2004 Robert A. van Engelen, Genivia inc. All rights reserved.

Portions of this software are copyright ©1998-2008 The OpenSSL Project and ©1995-1998 Eric Young (eay@cryptsoft.com). All rights reserved.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/).

This product includes JBOSS, which is distributed under the LGPL license. For more information see www.jboss.org and www.opensource.org/licenses/lgpl-license.php.

Adobe, the Adobe logo, Acrobat, the Acrobat logo, Adobe Creative Suite, Illustrator, InDesign, PDF, Photoshop, PostScript, XMP and the Powered by XMP logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States and/or other countries.

Microsoft and the Microsoft logo are registered trademarks of Microsoft Corporation in the United States and other countries.

SolidWorks is a registered trademark of SolidWorks Corporation.

Portions of this software are owned by Spatial Corp. 1986 2003. All Rights Reserved.
JDF and the JDF logo are trademarks of the CIP4 Organisation. Copyright 2001 The International Cooperation for the Integration of Processes in Prepress, Press and Postpress (CIP4). All rights reserved.

The Esko software contains the RSA Data Security, Inc. MD5 Message-Digest Algorithm.
Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems in the U.S. and other countries.
Part of this software uses technology by BestTM Color Technology (EFI). EFI and Bestcolor are registered trademarks of Electronics For Imaging GmbH in the U.S. Patent and Trademark Office.
All other product names are trademarks or registered trademarks of their respective owners.
Correspondence regarding this publication should be forwarded to:
Esko Software BVBA
Kortrijksesteenweg 1095
B – 9051 Gent
info.eur@esko.com
2. What is Remote Proofing?

With the Remote Proof solution, you no longer have to send your physical proof to your customer (via FedEx for example). You prepare the job for proofing (prepress, color management, RIP), and they proof it themselves!

This is a lot faster and more efficient, and you still have control over all the parameters.

• At the central site, you have: your full FlexProof/E solution.
• At the remote site, your customer has: a supported proofer with inline verification, and a proofer recalibration tool (to recalibrate the proofer automatically if a proof fails).

For details, see the System Requirements on page 6 and The Remote Proof Workflow on page 10.
3. System Requirements

You can find all the software you need on the FlexProof Remote DVD and the Esko Suite 12. Please see the Esko website for the current hardware requirements.

Here are the minimal software requirements:

At the Central Site

You need a full FlexProof/E solution:

- FlexProof Handlers
- Color Engine Pilot
- FlexRip Proof
- Esko Proof Server
- Esko Proof Server profiles
- Esko Verification
- A supported proofer with inline spectrophotometer (optional)

You can optionally have an Automation Engine server but it is not required.

At the Remote Site

You need:

- FlexProof Handlers
- Esko Proof Server
- Esko Proof Server profiles
- Esko Verification
- Proofer Recalibration Tool
- A supported proofer with inline spectrophotometer

You don’t need to have a FlexRip dispatcher at the remote site.

Proofer Operating Conditions

When using both a local proofer (at the central site) and a remote proofer, you need to make sure that they are operating in exactly the same conditions:

- Both proofers' operating conditions must comply with the manufacturer's recommendations (a room with a stable temperature and humidity).
- The drying time (specified in the Special pane of the Output Device in the Proof Client) must be the same for both proofers.
- The firmware of both proofers must be the same.
- Both spectrophotometers must be of the same type (with or without UV filter). We recommend using spectrophotometers without UV filter.
- The backing plate used in both spectrophotometers must be the same. We recommend using a white backing plate.
- When using the same spectrophotometer model on both sites, the firmware of both spectrophotometers should be the same.
Working with Several Central/Remote Sites

There can be multiple remote sites receiving the same job (the same proof at several locations). There can also be multiple central sites that proof to a single remote site (the remote site receives different proofs from different senders).

In this case, just perform the "central site" setup at all central sites, or the "remote site" setup at all remote sites.
4. Setup

4.1 At the Central Site

To perform the setup at the central site, you should have the same proofing device as the one that will be used by the remote site (with the same inks and the same paper).

Once the setup is done, you can either send that device to the remote site, or keep it at the central site for local proofing and send another device (of the exact same model) to the remote site.

1. In the Esko Proof Client:
 a) Make a **FlexProof/E configuration**: create a workflow with an output device corresponding to the proofing device.

 Note:
 Make sure that:
 - the workflow is connected to this device,
 - you set the correct parameters (media, number of copies, etc.),
 - there are no nesting parameters in your workflow (remote proofing doesn’t support nesting).

 If you already have a workflow with the correct parameters, you can reuse it.

 b) Select a **linearization** for the correct device, paper type and ink type from the Esko **Certified Media** database.

 The Certified Media database contains profiles and linearization files made by Esko in a controlled environment. You can access it on the Esko website if you have a Remote Proofing license.

 To get files from the Certified Media database, login to **EskoLink**, then click **Support > Documentation > FlexProof > FlexProof 10**.

 You can also make your own linearization, or reuse one you already have, but we recommend you use one from the Certified Media database.

 c) Save the linearization file for reuse at the remote site.

 This will give you a **.epl** file.

 For more details, see the Esko Proof manual.

2. In the Color Engine Pilot:
 a) Import a **profile** for the proofing device from the Esko **Certified Media** database.

 You can also make your own profile, but we recommend you use one from the Certified Media database.

 b) Attach this profile to the device using the Device Manager.

 c) Export this profile for reuse at the remote site.

 This will give you a FilePacker (**.fp**) file.
4.2 At the Remote Site

1. In the Esko Proof Client:
 a) Make an output device corresponding to your proofing device (you don’t need a workflow).

 Note: This should have the same parameters as the output device from in the central site’s
 Proof Client (see Setup at the Central Site).
 b) Import the linearization (.epl file) given to you by the central site and assign it to your output
 device.
 For more details, see the Esko Proof manual.

2. In the Proofer Recalibration tool:
 a) Select your device in the Proofer Recalibration dialog (it is shown automatically after defining
 it in the Proof Client) and click Set Profile...
 b) In the Set Profile pop-up, click Import.
 c) Browse to the .fp file containing the profile given to you by the central site, and click Open.
 d) Keep the profile’s existing name and click OK.
 e) Back the Set Profile dialog, select the profile you just imported and click Open.

3. Perform a fully automated Check and Recalibrate on your proofing device.
 The recalibration created will be applied automatically when proofing.
 See Recalibrating the Proofer at the Remote Site on page 17 for details.

4. We recommend you set up a Process Remote Proof ticket in the FlexProof Handlers, and link
 that ticket to a HotFolder, so that every job coming in is proofed automatically.
 a) In the Process Remote Proof ticket, select your Output Device.
 b) Save your Process Remote Proof ticket.
 c) Link it to a task HotFolder (see the FlexProof Handlers/Automation Engine manual for details).
5. The Remote Proof Workflow

5.1 Preparing a Job at the Central Site

1. Do all your prepress work on the job, color manage and RIP it.
2. Launch your Proof ticket on your job with the parameters described below.
3. In the Output tab:
 a) Select the FlexProof/E Configuration Set you created in the Proof Server (see Setup at the Central Site).
 b) Select the Prepare for Remote Proofing option.
 c) This enables two extra parameters: Output Folder and Output File. Use those to define where to output the zip file to send to the remote site, and with which name.

 Tip: If your network allows this, you can output the zip file directly into a HotFolder at the remote site for further automation (see Setup at the Remote Site).
4. In the **Color** tab, **Manage Color** is automatically enabled. Choose the **Profile** or **Color Strategy** to use for proofing your job.

5. In the **Verification** tab, **Print Verification Strip** is automatically enabled.

 a) In the **Strip Preset** list, select either:

 • a strip preset from your color database (see **Strip Presets** for more information).

 This will fill (some of) the options below automatically. Options automatically set by a strip preset are marked by a small flag 🍀.

 • **Custom** if you want to set the options yourself.

 Tip: You can also start from a preset and change the other options as desired (the **Strip Preset** field will then show **Custom**).

 Note: In a Remote Proofing workflow, you cannot use strip presets specifying that no color management should be used. Such presets will not be shown in the **Strip Preset** list.

 b) Choose the **Strip Type** to use (see **Strips** on page 14 for more details about the available strips).

 c) **Apply color management to strip and Verify strip (with Verification tool)** are selected automatically.

 d) In the **Reference** list, choose either:

 • **Manually load reference values** if you want to verify the color managed strip against a standard (e.g. Ugra/Fogra) or a previous measurement.

 You will need to load this standard manually in EskoArtwork Verification.

 • **Automatically load reference values from source profile** if you want to verify the color managed strip against the source ICC profile (set in the Color Strategy used or defined in the **Color** tab).

 e) Choose the **dE Formula** (Delta E formula) to use when verifying your strip.

 Delta E is the distance between two colors in the CIE Lab color space.
You can select between dE CIE76, dE CMC, dE 94 and dE 2000. If your company is already using one of those standards, we recommend that you choose the same one. If not, you may want to use dE CIE76, which is used by the ISO standard.

f) Click Edit... near Tolerances to set the tolerances to use when verifying your strip.

The verification will pass if the color differences are within the tolerances, or fail if they are bigger.

You can fill in:

| General dE Limits | The Delta E tolerances for the color patches and the paper white.
| | Fill in a tolerance value for **Average Outer Gamut Patches** if you are using a validation chart containing out-of-gamut patches.
| | The **Maximum for 95% of Patches** tolerance excludes the worst 5% patches from the calculation. |

| Primary color dE Limits | The Delta E tolerances for the CMYK patches only. |

| Hue difference Tolerance Limits | The Delta H tolerances for the CMYK, CMYKRGB and Gray patches.
| | Delta H is the difference in Hue between two colors.
| | The generally accepted Delta H tolerances are a maximum of 1.5 for gray areas, and of 2.5 for primary colors. |

| Tone Value Tolerance Limits | The Delta T tolerance for the CMYK patches.
| | Delta T is the colorimetric dot gain for primary colors.
| | The general Delta T tolerance is a -5% to +5% tone value difference. |

| Chromaticness Tolerance Limits | The Delta F tolerance for the color patches.
| | Delta F is the difference in Saturation between two colors. |

Note: If you selected a Strip Preset, the tolerances may be automatically defined.

g) In **Strip Layout**, SpectroProofer is already selected.

h) Choose to print a verification report or not:

In **Print Inline Report**, select either:

- **Never** to never print any report,
- **Always** to print a report whether the verification succeeds or fails,
- **When verification passes** to only print a report when the verification succeeds.
After launching the task, you can see a Prepare Remote Proof task after the Proof task in the Tasks pane.

<table>
<thead>
<tr>
<th>File Name</th>
<th>Job Name</th>
<th>Task Type</th>
<th>Progress</th>
<th>Phase</th>
<th>State</th>
<th>Launched</th>
</tr>
</thead>
<tbody>
<tr>
<td>q3_pa6001</td>
<td>1 C#W Y+K+...</td>
<td>Prepare Remote Proof</td>
<td></td>
<td></td>
<td></td>
<td>201081 10:44</td>
</tr>
<tr>
<td>q3_pa6001</td>
<td>1 C#W Y+K+...</td>
<td>Print/Proof on Proofer Output</td>
<td></td>
<td></td>
<td></td>
<td>201081 10:44</td>
</tr>
<tr>
<td>q3_pa6001</td>
<td></td>
<td>Proof (File) on Proofer Output</td>
<td></td>
<td></td>
<td></td>
<td>201081 10:44</td>
</tr>
</tbody>
</table>

This creates a zip file (at the location defined in Output Folder and with the name defined in Output File) containing:

- a color managed TIFF of the job to proof,
- a color managed TIFF of the verification strip,
- a file containing the expected measurement values for the strip,
- a parameter file containing all the parameters you set in your Proof Server workflow (linearization file, proofer profile, media type, number of copies...).

Tip: You can see the parameters of the zip file in the task log.
Note:
If you want to proof the job locally at the central site (to check it before sending the zip to the remote site), launch the Process Remote Proof task on the zip file you created, as you would on the remote site (see Proofing the Job at the Remote Site on page 16).
If the proof is OK, send the zip to the remote site.

5.1.1 Strips

Strip Type
You can choose between several types of strips:

- **EskoStrips** contain the following CMYK patches:
 - patches of C, M and Y at 100%, 70% and 40%,
 - overprints of C and M at 100%, 70% and 40%,
 - overprints of C and Y at 100%, 70% and 40%,
 - overprints of Y and M at 100%, 70% and 40%,
 - an overprint of CMYK at respectively 100%, 40%, 40% and 20%,
 - an overprint of CMYK at respectively 40%, 100%, 40% and 20%,
 - an overprint of CMYK at respectively 40%, 40%, 100%, 20%,
 - patches of K at 0%, 20%, 40%, 70% and 100%.

- **Esko + Solid Color Strips** contain the same patches as the EskoStrips, plus a 100% patch for every spot color present in the job.

 Note: You can only use **Esko + Solid Color Strips** if you are color managing your job.

- **EFI Color Verifier Charts** can be used with Esko Verification.
- proprietary strips (IDEAlliance, Ugra-Fogra...).

Strip Layout
For each strip type, several strip layouts are available, each layout being designed for a type of measuring device (Eye-One, IO, etc.).

For example, for the **EskoStrip** type, you have the following layouts:

DTP41

SpectroProofer
5.1.2 Strip Presets

Strip Presets are predefined verification options that come with your color database. They can contain information about the strip and the measurement device to use, the tolerances in color difference, etc.

Esko provides strip presets for the most commonly used verification standard, the ISO Norm for Proofing Verification.

You can choose either:

- ISO 12647-7 Contract Proof 'Chart' if you want to print a whole verification chart,
• ISO 12647-7 Contract Proof 'Media Wedge' if you just want to print a verification strip (the Fogra Media Wedge).

These strip presets contain color difference tolerances, and can be used with any proofing and verification device that you can use with FlexProof.

5.2 Transferring the Job to the Remote Site

You can transfer the zip file to the remote site any way you like: FTP, email, network share, cloud...

If you are using Automation Engine, you can add an Upload via FTP or a Send E-mail task to your Proof workflow, so the job is transferred automatically.

You can also output/send the file to a HotFolder at the remote site.

We recommend you use a HotFolder, and link the Process Remote Proof ticket to this HotFolder at the remote site, so that every job coming in is proofed automatically (see Setup at the Remote Site).

5.3 Proofing the Job at the Remote Site

If you have set up a HotFolder with a Process Remote Proof ticket linked (see Setup at the Remote Site), every job coming in is proofed automatically, so you just need to check the proof!

Otherwise, do the following:

1. If you haven’t already created a custom Process Remote Proof ticket, do the following in the FlexProof Handlers:
 a) Open the Process Remote Proof ticket.
 b) Select your Output Device.
c) Save the ticket as a custom ticket.

2. Run this ticket on every job that comes in.

Note:
A validation check is performed before proofing the job: you will get an error message if:

- you don’t have the correct license,
- the zip file is invalid (it hasn’t been created by the Prepare Remote Proof task, or has been edited after creation),
- the parameters of your output device don’t correspond to the parameters in the zip file.

5.4 Recalibrating the Proofer at the Remote Site

If the inline verification fails, it is generally because the proofer’s colors have shifted compared to what is described in the proofer profile.

You then need to recalibrate the proofer profile, to get consistent output again.
1. Launch the Proofer Recalibration tool using the desktop shortcut.

You can also go to Start > All Programs > Esko > Proofer Recalibration 10.1 > Proofer Recalibration 10.1.

2. In the Proofer Recalibration dialog, select the proofing device to recalibrate and click Check and Recalibrate...

3. In the Check and Recalibrate dialog that opens:

 a) Click Set Tolerances to set the Delta E tolerances and Delta E Formula to use during the check and recalibration, and the Maximum number of cycles to run.
Note: You can set default values for those in the *Devices Preferences.*

b) **Click Start** to start the check and recalibration.

This will first check if the proofer needs a recalibration (by printing a test chart and measuring it automatically), and if it does, recalibrate it and check again.

If the result still isn’t within the tolerances you defined, a new recalibration cycle is started (up to the **Maximum number of cycles** you defined in the *Set Tolerances* dialog).

Note: **Click Show Details** to see details of the check and recalibration in the same window (at the end of each cycle).

Check and Recalibrate Epson7900 HT

To check and recalibrate your proofers, the software will run through a number of cycles in which a test chart will be printed and measured automatically. This may take some time, depending on the number of cycles defined in *Set Tolerances* (up to 1 hour).

Click the Start button to start the recalibration.

Results

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Average</th>
<th>Maximum</th>
<th>Substrate</th>
<th>Primaries</th>
<th>Grey</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.01</td>
<td>9.61</td>
<td>✔ 2.15</td>
<td>5.26</td>
<td>3.81</td>
<td>✔</td>
</tr>
<tr>
<td>2</td>
<td>✔ 2.24</td>
<td>✔ 6.21</td>
<td>✔ 2.15</td>
<td>✔ 3.05</td>
<td>2.14</td>
<td>✔</td>
</tr>
<tr>
<td>3</td>
<td>✔ 1.78</td>
<td>✔ 5.11</td>
<td>✔ 2.15</td>
<td>✔ 2.40</td>
<td>2.32</td>
<td>✔</td>
</tr>
</tbody>
</table>

In the *Result* column, you will see ✔ if all elements are within the Delta E tolerances, and ✗ if some elements are over those tolerances.